Glaucarubinone and gemcitabine synergistically reduce pancreatic cancer growth via down-regulation of P21-activated kinases.
نویسندگان
چکیده
Pancreatic cancer is one of the most lethal of human malignancies. Nearly 100% cases of pancreatic cancer carry mutations in KRas. P-21-activated kinases (PAKs) are activated by and act downstream of KRas. Glaucarubinone, a natural product first isolated from the seeds of the tree Simarouba glauca, was originally developed as an antimalarial drug, and has more recently been recognised as an anticancer agent. The aims of this study were to determine whether glaucarubinone, alone or in combination with the front-line chemotherapeutic agent gemcitabine, would inhibit the growth of pancreatic cancer cells in vitro or in vivo and the mechanism involved. Growth of the human pancreatic cancer cell lines PANC-1 and MiaPaCa-2 was measured by (3)H-thymidine incorporation in vitro, and by volume as xenografts in SCID mice. The expression and activities of the two serine/threonine kinases PAK1 and PAK4, which are key regulators of cancer progression, were measured by Western blotting. Here we report that glaucarubinone decreased proliferation and migration of pancreatic cancer cells in vitro, and reduced their growth as xenografts in vivo. Treatment with glaucarubinone and gemcitabine reduced proliferation in vitro and tumor growth in vivo more than treatment with either glaucarubinone or gemcitabine alone. Treatment with glaucarubinone reduced PAK1 and PAK4 activities, which were further decreased by the combination of glaucarubinone and gemcitabine. These results indicate that glaucarubinone reduced pancreatic cancer cell growth at least in part via inhibition of pathways involving PAK1 and PAK4. The synergistic inhibition by glaucarubinone and gemcitabine observed both in vitro and in vivo suggests that glaucarubinone may be a useful adjunct to current regimes of chemotherapy.
منابع مشابه
p21-Activated Kinase 4 (PAK4) as a Predictive Marker of Gemcitabine Sensitivity in Pancreatic Cancer Cell Lines
PURPOSE p21-activated kinases (PAKs) are involved in cytoskeletal reorganization, gene transcription, cell proliferation and survival, and oncogenic transformation. Therefore, we hypothesized that PAK expression levels could predict the sensitivity of pancreatic cancer cells to gemcitabine treatment, and PAKs could be therapeutic targets. MATERIALS AND METHODS Cell viability inhibition by gem...
متن کاملBRG1 promotes chemoresistance of pancreatic cancer cells through crosstalking with Akt signalling.
Gemcitabine is a standard chemotherapeutic agent for locally advanced and metastatic pancreatic cancer. However, the chemoresistance of pancreatic cancer is the major barrier to efficient chemotherapy. Here, we reported that BRG1, a chromatin modulator, was exclusively overexpressed in human pancreatic ductal adenocarcinoma tissues. BRG1 knockdown inhibited PANC-1 and MIA PaCa-2 cell growth in ...
متن کاملThe histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances gemcitabine-induced cell death in pancreatic cancer.
PURPOSE Pancreatic cancer is an aggressive human malignancy that is generally refractory to chemotherapy. Histone deacetylase inhibitors are novel agents that modulate cell growth and survival. In this study, we sought to determine whether a relatively new histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), inhibits pancreatic cancer cell growth. EXPERIMENTAL DESIGN The eff...
متن کاملCeramide regulates gemcitabine-induced senescence and apoptosis in human pancreatic cancer cell lines.
Bioactive sphingolipids are potent intracellular signaling molecules having profound effects on cell death, growth, and differentiation. Pharmacologic manipulation of sphingolipid levels could have a significant effect on the induction of apoptosis by anticancer agents, and thus, improve treatment efficacy. We observed that gemcitabine cannot completely kill AsPc1 and Panc1 human pancreatic can...
متن کاملCyclooxygenase-2-dependent and -independent effects of celecoxib in pancreatic cancer cell lines.
Cyclooxygenase-2 (COX-2) is involved in inhibition of apoptosis, potentiation of cell growth, and angiogenesis and as such is a target for drug development. The COX-2 enzyme is frequently overexpressed in pancreatic cancer. The aim of this study was to determine the effects of celecoxib on the growth inhibition and induction of apoptosis by gemcitabine in pancreatic cancer cell lines. Baseline ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer letters
دوره 346 2 شماره
صفحات -
تاریخ انتشار 2014